

vPoller - Distributed vSphere API Proxy

vPoller is a distributed VMware vSphere API Proxy, designed
for discovering and polling of vSphere objects.

It uses the VMware vSphere API [https://www.vmware.com/support/developer/vc-sdk/] in order to perform discovery
and polling of vSphere objects.

vPoller uses the ZeroMQ messaging library [http://zeromq.org/] for distributing tasks
to workers and load balancing of client requests.

vPoller can be integrated with other systems, which require access to
vSphere objects, but do not have native support for it.

Possible scenarios where vPoller could be used is integration with
monitoring systems as part of the discovery and polling process
in order to provide monitoring of your VMware vSphere environment.

vPoller has been tested with VMware vSphere 5.x and with very
limited testing on vSphere 4.x

vPoller is Open Source and licensed under the BSD License [http://opensource.org/licenses/BSD-2-Clause].

Contributions

vPoller is hosted on Github [https://github.com/dnaeon/py-vpoller]. Please contribute by reporting
issues, suggesting features or by sending patches using pull requests.

Bugs

Probably. If you experience a bug issue, please report it to the
vPoller issue tracker on Github [https://github.com/dnaeon/py-vpoller/issues]

Getting started

A good place to start with vPoller is to go over the
Terminology page in order to get familiar with the concepts and
terms used in vPoller.

Once ready with that go ahead to the Installation of vPoller and
Configuration of vPoller documentations, which provide all the details
about how to install and configure vPoller.

Make sure to also check the Example usage of vPoller page and see how to run
your first vPoller task requests.

Contents

	Installation of vPoller
	Requirements

	Installation with pip

	Installation from source

	Installing the C client of vPoller

	Configuration of vPoller
	Configuring vSphere Agents for the Workers

	vPoller Services
	Starting and stopping the vPoller Proxy

	Starting and stopping the vPoller Worker

	Using the vPoller Management Interfaces

	Managing vPoller Services with Supervisord

	vPoller Helpers
	Enabling helpers

	vPoller Zabbix Helper

	vPoller CSV Helper

	Example usage of vPoller
	Getting vSphere “about” info

	Datacenter examples

	ClusterComputeResource examples

	HostSystem examples

	VirtualMachine examples

	Datastore examples

	Viewing established Sessions

	Getting vSphere Events

	Getting vSphere Alarms

	Performance metrics

	Using the API
	Sending task requests for processing

	Executing vPoller tasks locally

	Interfacing with vPoller from other languages

	vPoller Integration With Zabbix
	Why use vPoller with Zabbix and not just use stock Zabbix for VMware monitoring?

	Prerequisites

	Enabling the vPoller Helpers for Zabbix

	Importing the vPoller templates in Zabbix

	Native vPoller support for Zabbix

	The Zabbix vPoller Key

	Setting up vPoller externalscripts for Zabbix

	Monitoring your VMware environment with vPoller and Zabbix

	Importing vSphere objects as regular Zabbix hosts

	Agent-less process monitoring in Virtual Machines

	Example screenshots

	Supported methods by vPoller

	Terminology

Installation of vPoller

This document walks you through the installation of vPoller.

There are a number of ways to install vPoller on your system -
you could either install vPoller from source from the Github repo,
or install via pip.

Requirements

On the list below you can see the dependencies of vPoller:

	Python 2.7.x, 3.2.x or later [http://python.org/]

	pyVmomi [https://github.com/vmware/pyvmomi]

	vconnector [https://github.com/dnaeon/py-vconnector]

	pyzmq [https://github.com/zeromq/pyzmq]

	docopt [https://github.com/docopt/docopt]

The C client of vPoller [https://github.com/dnaeon/py-vpoller/tree/master/extra/vpoller-cclient] also requires the following packages to be
installed in order to build it:

	Python development files (on Debian systems this is usually
provided by the python-dev package)

	ZeroMQ 4.x Library [https://github.com/zeromq/zeromq4-x]

Installation with pip

In order to install vPoller using pip, simply execute this command:

$ pip install vpoller

If you would like to install vPoller in a virtualenv, then
follow these steps instead:

$ virtualenv vpoller-venv
$ source vpoller-venv/bin/activate
$ pip install vpoller

Installation from source

The master branch of vPoller is where main development happens.

In order to install the latest version of vPoller follow these
simple steps:

$ git clone https://github.com/dnaeon/py-vpoller.git
$ cd py-vpoller
$ sudo python setup.py install

If you would like to install vPoller in a virtualenv follow
these steps instead:

$ virtualenv vpoller-venv
$ source vpoller-venv/bin/activate
$ git clone https://github.com/dnaeon/py-vpoller.git
$ cd py-vpoller
$ python setup.py install

This should take care of installing all dependencies for you
as well.

In order to install one of the stable releases of vPoller please
refer to the page of vPoller stable releases [https://github.com/dnaeon/py-vpoller/releases].

Installing the C client of vPoller

vPoller comes with two client applications - a Python and a C client.

In order to use the C client of vPoller you need to make sure that
you have the ZeroMQ 4.x library [https://github.com/zeromq/zeromq4-x] installed as the C client is
linked against it.

Here is how to install the ZeroMQ 4.x library [https://github.com/zeromq/zeromq4-x] on your system
from source:

$ git clone https://github.com/zeromq/zeromq4-x.git
$ cd zeromq4-x
$./autogen.sh
$./configure
$ make && sudo make install && make clean
$ sudo ldconfig

After that building the vPoller C client is as easy as this:

$ cd py-vpoller/extra/vpoller-cclient
$ make

You should now have the vpoller-cclient executable in your
current directory built and ready for use.

Configuration of vPoller

The default configuration file of vPoller resides in a single
file and it’s default location is /etc/vpoller/vpoller.conf.

Below is an example vpoller.conf file that you can use:

[proxy]
frontend = tcp://*:10123
backend = tcp://*:10124
mgmt = tcp://*:9999

[worker]
db = /var/lib/vconnector/vconnector.db
proxy = tcp://localhost:10124
mgmt = tcp://*:10000
helpers = vpoller.helpers.zabbix, vpoller.helpers.czabbix
tasks = vpoller.vsphere.tasks

[cache]
enabled = True
maxsize = 0
ttl = 3600
housekeeping = 480

The table below provides information about the config entries
used along with a description for each of them.

	Section

	Option

	Description

	proxy

	frontend

	Endpoint to which clients connect and send tasks for processing

	proxy

	backend

	Endpoint to which workers connect and get tasks for processing

	proxy

	mgmt

	Management endpoint, used for management tasks of the vPoller Proxy

	worker

	db

	Path to the vconnector.db SQLite database file

	worker

	proxy

	Endpoint to which workers connect and get tasks for processing

	worker

	mgmt

	Management endpoint, used for management tasks for the vPoller Worker

	worker

	helpers

	Helper modules to be loaded and used for post-processing of any result data

	worker

	tasks

	Task modules to be loaded by the vPoller Worker

	cache

	enabled

	If True then vPoller Worker will use a cache for the vSphere managed objects

	cache

	maxsize

	Upperbound limit on the entries stored in the cache

	cache

	ttl

	The TTL in seconds after which a cached object is considered as expired

	cache

	housekeeping

	Time in minutes to perform periodic cache housekeeping

Configuring vSphere Agents for the Workers

The vSphere Agents are the ones that take care of establishing
connections to the vSphere hosts and perform discovery and polling
of vSphere objects.

A vPoller Worker can have as many vSphere Agents as you want,
which means that a single vPoller Worker can be used to monitor
multiple vSphere hosts (ESXi hosts, vCenter servers).

Connection details (username, password, host) about each
vSphere Agent are stored in a SQLite [http://www.sqlite.org/] database and are
managed by the vconnector-cli [https://github.com/dnaeon/py-vconnector] tool.

Note

The example commands below use the root account for
configuring a vSphere Agent for a vCenter Server.

The root account in a vCenter Server by default has full
administrative privileges.

If security is a concern you should use an account for your
vSphere Agents that has a restricted set of privileges.

First let’s initialize the vConnector database file:

$ sudo vconnector-cli init

By default the vconnector.db database file resides in
/var/lib/vconnector/vconnector.db, unless you specify an
alternate location from the command-line.

Now, let’s add one vSphere Agent, which can later be used by
our vPoller Worker.

This is how to add a new vSphere Agent using vconnector-cli:

$ sudo vconnector-cli -H vc01.example.org -U root -P p4ssw0rd add

When you create a new vSphere Agent by default it will be
disabled, so in order to use that agent in your vPoller Worker
you should enable it first.

This is how to enable a vSphere Agent:

$ sudo vconnector-cli -H vc01.example.org enable

At any time you can view the currently registered vSphere Agents
by running the vconnector-cli get command, e.g.:

$ sudo vconnector-cli get
+------------------+------------+------------+-----------+
| Hostname | Username | Password | Enabled |
+==================+============+============+===========+
| vc01.example.org | root | p4ssw0rd | 1 |
+------------------+------------+------------+-----------+

As the vconnector.db database contains connection details about
your VMware vSphere hosts in order to avoid any leak of sensitive
data you would want to secure this file and make it readable only
by the user, which runs the vPoller Worker.

vPoller Services

vPoller consists of a number of components, each responsible for a
specific task.

This page describes how to manage the vpoller-proxy and
vpoller-worker services.

Please refer to the Terminology page for more
information about the vPoller components and their purpose.

In a production environment you would want to have these services
running as daemons and started at boot-time. At the end of this
documentation we will see how to use a process control system
such as Supervisord [http://supervisord.org/] for managing the vpoller-proxy and
vpoller-worker services.

Starting and stopping the vPoller Proxy

In order to start the vpoller-proxy service simply execute the
command below:

$ vpoller-proxy start

After you start the vpoller-proxy service you should see something
similar, which indicates that the vpoller-proxy has started
successfully and is ready to distribute tasks to the
vPoller Workers.

$ vpoller-proxy start
[2014-09-05 13:26:04,807 - INFO/MainProcess] Starting Proxy Manager
[2014-09-05 13:26:04,808 - INFO/MainProcess] Creating Proxy Manager sockets
[2014-09-05 13:26:04,808 - INFO/MainProcess] Starting Proxy process
[2014-09-05 13:26:04,809 - INFO/MainProcess] Proxy Manager is ready and running
[2014-09-05 13:26:04,810 - INFO/VPollerProxy-1] Proxy process is starting
[2014-09-05 13:26:04,810 - INFO/VPollerProxy-1] Creating Proxy process sockets
[2014-09-05 13:26:04,810 - INFO/VPollerProxy-1] Proxy process is ready and running

In order to stop the vpoller-proxy service simply hit Ctrl+C,
which would gracefully shutdown the service.

Another way to stop the vpoller-proxy service is to use the
management interface and send a shutdown signal to the service.

Here is how to shutdown a vpoller-proxy using the management
interface:

$ vpoller-proxy --endpoint tcp://localhost:9999 stop

Starting and stopping the vPoller Worker

In order to start the vpoller-worker service simply execute the
command below:

$ vpoller-worker start

After you start the vpoller-worker service you should see
something similar, which indicates that the vpoller-worker has
started successfully and is ready to process task requests.

[2014-09-05 04:26:38,136 - INFO/MainProcess] Starting Worker Manager
[2014-09-05 04:26:38,138 - INFO/MainProcess] Starting Worker processes
[2014-09-05 04:26:38,138 - INFO/MainProcess] Concurrency: 1 (processes)
[2014-09-05 04:26:38,139 - INFO/MainProcess] Worker Manager is ready and running
[2014-09-05 04:26:38,141 - INFO/VPollerWorker-1] Worker process is starting
[2014-09-05 04:26:38,142 - INFO/VPollerWorker-1] Creating Worker sockets
[2014-09-05 04:26:38,144 - INFO/VPollerWorker-1] Worker process is ready and running

By default when you start the vpoller-worker service it will
create worker processes equal to the number of cores available
on the target system.

In order to control the concurrency level and how many worker
processes will be started use the --concurrency option of
vpoller-worker.

Here is an example command, which will start vpoller-worker
with 4 worker processes.

$ vpoller-worker --concurrency 4 start
[2014-09-05 04:29:56,680 - INFO/MainProcess] Starting Worker Manager
[2014-09-05 04:29:56,682 - INFO/MainProcess] Starting Worker processes
[2014-09-05 04:29:56,682 - INFO/MainProcess] Concurrency: 4 (processes)
[2014-09-05 04:29:56,689 - INFO/VPollerWorker-1] Worker process is starting
[2014-09-05 04:29:56,694 - INFO/VPollerWorker-1] Creating Worker sockets
[2014-09-05 04:29:56,691 - INFO/VPollerWorker-2] Worker process is starting
[2014-09-05 04:29:56,698 - INFO/VPollerWorker-2] Creating Worker sockets
[2014-09-05 04:29:56,693 - INFO/VPollerWorker-3] Worker process is starting
[2014-09-05 04:29:56,700 - INFO/VPollerWorker-3] Creating Worker sockets
[2014-09-05 04:29:56,703 - INFO/VPollerWorker-3] Worker process is ready and running
[2014-09-05 04:29:56,698 - INFO/VPollerWorker-4] Worker process is starting
[2014-09-05 04:29:56,703 - INFO/MainProcess] Worker Manager is ready and running
[2014-09-05 04:29:56,704 - INFO/VPollerWorker-1] Worker process is ready and running
[2014-09-05 04:29:56,706 - INFO/VPollerWorker-4] Creating Worker sockets
[2014-09-05 04:29:56,705 - INFO/VPollerWorker-2] Worker process is ready and running
[2014-09-05 04:29:56,710 - INFO/VPollerWorker-4] Worker process is ready and running

In order to stop the vpoller-worker service simply hit Ctrl+C,
which would gracefully shutdown the service.

Another way to stop the vpoller-worker service is to use the
management interface and send a shutdown signal to the service.

Here is how to shutdown a vpoller-worker using the management
interface:

$ vpoller-worker --endpoint tcp://localhost:10000 stop

Using the vPoller Management Interfaces

When you start vpoller-proxy and vpoller-worker a management
endpoint is available for sending management tasks to the services.

At any time you can request status information from your
vPoller services by sending a request to the management interface.

This is how you could get status information from your
vpoller-proxy:

$ vpoller-proxy --endpoint tcp://localhost:9999 status

And this is how you could get status information from your
vpoller-worker:

$ vpoller-worker --endpoint tcp://localhost:10000 status

Managing vPoller Services with Supervisord

When running vPoller in a production environment you would want to
have the vpoller-proxy and vpoller-worker services running as
daemons and started at boot-time.

In this section we will see how to use Supervisord [http://supervisord.org/] for managing the
vPoller services.

First, make sure that you have Supervisord [http://supervisord.org/] installed on your
system.

After that create the following config file and place it into your
Supervisord include directory.

[program:vpoller-proxy]
command=/usr/bin/vpoller-proxy start
redirect_stderr=true
stdout_logfile=/var/log/vpoller/vpoller-proxy.log
autostart=true
;user=myusername
stopsignal=INT

[program:vpoller-worker]
command=/usr/bin/vpoller-worker start
redirect_stderr=true
stdout_logfile=/var/log/vpoller/vpoller-worker.log
autostart=true
;user=myusername
stopsignal=INT

Now reload Supervisord by executing these commands:

$ sudo supervisorctl reread
$ sudo supervisorctl reload

In order to start the vpoller-proxy and vpoller-worker
services you would use the supervisorctl tool.

This is how to start the vPoller services:

$ sudo supervisorctl start vpoller-proxy
$ sudo supervisorctl start vpoller-worker

And this is how to stop the vPoller services:

$ sudo supervisorctl stop vpoller-proxy
$ sudo supervisorctl stop vpoller-worker

For more information about what you can do with Supervisord,
please refer to the official documentation of Supervisord [http://supervisord.org/].

vPoller Helpers

The vPoller Helpers were implemented in order to provide an
easy way for connecting your applications to vPoller.

A result messages returned by the vpoller-worker is always in
JSON format. This could be okay for most applications, which require
to process a result message, but in some cases you might want to
receive the result in different formats and feed the data into
your application.

Using the vPoller Helpers you are able to convert the result
message to a format that your application or system understands.

The table below summarizes the currently existing and
supported vPoller Helpers along with a short description:

	vPoller Helper

	Description

	vpoller.helpers.zabbix

	Helper which returns result in Zabbix-friendly format

	vpoller.helpers.czabbix

	vPoller Zabbix helper for C clients

	vpoller.helpers.csvhelper

	Helper which returns result in CSV format

	vpoller.helpers.cclient

	Helper for vPoller C clients

The vPoller Helpers are simply Python modules and are
loaded by the vPoller Workers upon startup.

Enabling helpers

In order to enable helpers in your vPoller Workers you need to
specify in the vpoller.conf file the helper modules, which you
wish to be loaded and available to clients.

Here is a sample vpoller.conf file which includes the helpers
configuration option for loading the zabbix helper
module in your vPoller Worker:

[proxy]
frontend = tcp://*:10123
backend = tcp://*:10124
mgmt = tcp://*:9999

[worker]
db = /var/lib/vconnector/vconnector.db
proxy = tcp://localhost:10124
mgmt = tcp://*:10000
helpers = vpoller.helpers.zabbix

Multiple vPoller helpers can be loaded as well by separating them
using a comma.

Here’s an example vpoller.conf file which loads multiple helpers
in your vPoller Worker:

[proxy]
frontend = tcp://*:10123
backend = tcp://*:10124
mgmt = tcp://*:9999

[worker]
db = /var/lib/vconnector/vconnector.db
proxy = tcp://localhost:10124
mgmt = tcp://*:10000
helpers = vpoller.helpers.zabbix,vpoller.helpers.czabbix

vPoller Zabbix Helper

One of the vPoller Helpers is the Zabbix vPoller Helper module [https://github.com/dnaeon/py-vpoller/tree/master/src/vpoller/helpers/zabbix.py],
which can translate a result message to Zabbix LLD format [https://www.zabbix.com/documentation/2.2/manual/discovery/low_level_discovery] and
return values ready to be used in Zabbix items as well.

Here is an example of using the Zabbix vPoller Helper,
which will convert a result message to Zabbix-friendly format:

$ vpoller-client --method datastore.discover --vsphere-host vc01.example.org \
 --helper vpoller.helpers.zabbix

The *.discover methods of vPoller when used with the Zabbix helper,
would return data ready in Zabbix LLD format.

When using the *.get methods of vPoller with the Zabbix helper,
the result would be a single property value, making it suitable
for use in Zabbix items.

This is how to retrieve a property of a Datastore object using the
Zabbix helper:

$ vpoller-client --method vm.get --vsphere-host vc01.example.org \
 --name vm01.example.org --properties runtime.powerState \
 --helper vpoller.helpers.zabbix

vPoller CSV Helper

Another vPoller helper is the vPoller CSV helper which translates
a result message in CSV format.

Here is an example how to get all your Virtual Machines and their
runtime.powerState property in CSV format:

$ vpoller-client --method vm.discover --vsphere-host vc01.example.org \
 --properties runtime.powerState \
 --helper vpoller.helpers.csvhelper

And here is a sample result from the above command:

name,runtime.powerState
vpoller-vm-1,poweredOn
vpoller-vm-2,poweredOn
freebsd-vm-1,poweredOn
zabbix-vm-1.04-dev,poweredOn

Here is one post that you can read which makes use of the
vPoller CSV Helper in order to export data from a vSphere
environment and plot some nice graphs from it.

	Exporting Data From a VMware vSphere Environment For Fun And Profit [http://unix-heaven.org/node/116]

Example usage of vPoller

This page provides some examples how vPoller can be
used to perform various operations like discovery and polling of
VMware vSphere objects.

Please also refer to the Supported methods by vPoller documentation
for the full list of supported vPoller methods you could use.

The property names which we use in these examples can be found in the
official VMware vSphere API documentation [https://www.vmware.com/support/developer/vc-sdk/].

Each vSphere managed object has specific properties, which are
documented in the official documentation.

The examples here serve for demonstration purpose only and do not
provide all the properties you could use and get from vSphere objects,
so make sure to refer to the official vSphere documentation when
looking for a specific property name.

There are also a number of posts about how vPoller is being used
for various purposes, which you could also read at the following
links:

	VMware vSphere CLI tips & tricks with vPoller [http://unix-heaven.org/node/111]

	VMware monitoring with Zabbix, Python & vPoller [http://unix-heaven.org/node/114]

	Exporting Data From a VMware vSphere Environment For Fun And Profit [http://unix-heaven.org/node/116]

Getting vSphere “about” info

Using the about vPoller method you can retrieve information about
your vSphere host such as API version, vendor, build number, etc.

Here is an example of using the vPoller about method:

$ vpoller-client --method about --vsphere-host vc01.example.org \
 --method about --properties version,fullName,apiVersion,vendor

Datacenter examples

Here is how to discover all Datacenter objects from your vSphere
environment:

$ vpoller-client --method datacenter.discover --vsphere-host vc01.example.org

An example command that would get the summary.overallStatus
property of a specific Datacenter:

$ vpoller-client --method datacenter.get --vsphere-host vc01.example.org \
 --name datacenter01 --properties name,overallStatus

ClusterComputeResource examples

A ClusterComputeResource managed object is what you are used to
refer to simply as cluster in vSphere. The examples commands below
show how to discover and get properties for your vSphere clusters.

An example command to discover all ClusterComputeResource
managed objects from your vSphere environment:

$ vpoller-client --method cluster.discover --vsphere-host vc01.example.org

And here is how to get the overallStatus property for a specific
ClusterComputeResource managed object:

$ vpoller-client --method cluster.get --vsphere-host vc01.example.org \
 --name cluster01 --properties name,overallStatus

HostSystem examples

HostSystem managed objects in vSphere are your ESXi hosts.

Here is an example how to discover all your ESXi hosts from your
vSphere environment:

$ vpoller-client --method host.discover --vsphere-host vc01.example.org

And here is an example command to get the runtime.powerState
property for a specific HostSystem object:

$ vpoller-client --method host.get --vsphere-host vc01.example.org \
 --name esxi01.example.org --properties runtime.powerState

An example command to get all Virtual Machines registered on a
specific ESXi host:

$ vpoller-client --method host.vm.get --vsphere-host vc01.example.org \
 --name esxi01.example.org

Here is how you can get all datastores used by a specific ESXi host:

$ vpoller-client --method host.datastore.get --vsphere-host vc01.example.org \
 --name esxi01.example.org

VirtualMachine examples

An example command to discover all VirtualMachine managed
objects from your vSphere environment:

$ vpoller-client --method vm.discover --vsphere-host vc01.example.org

Another example showing how to get the runtime.powerState
property of a Virtual Machine:

$ vpoller-client --method vm.get --vsphere-host vc01.example.org \
 --name vm01.example.org --properties runtime.powerState

This is how you could discover all disks in a Virtual Machine. Note,
that this method requires that you have VMware Tools installed and
running on the target Virtual Machine:

$ vpoller-client --method vm.disk.discover --vsphere-host vc01.example.org \
 --name vm01.example.org

If you want to get information about a disk in a Virtual Machine you
could use the vm.disk.get vPoller method. This is how to get the
freeSpace property for a Virtual Machine disk:

$ vpoller-client --method vm.disk.get --vsphere-host vc01.example.org \
 --name vm01.example.org --properties freeSpace --key /var

In order to find out the host on which a specific Virtual Machine is
running on you could use the vm.host.get vPoller method:

$ vpoller-client --method vm.host.get --vsphere-host vc01.example.org \
 --name vm01.example.org

The example below shows how to retrieve information about the network
that a Virtual Machine is using along with information about it’s
IP address and MAC address:

$ vpoller-client --method vm.guest.net.get --vsphere-host vc01.example.org \
 --name vm01.example.org --properties network,ipAddress,macAddress

If you want to see which datastores your Virtual Machine is using you
can use the vm.datastore.get vPoller method, e.g.:

$ vpoller-client --method vm.datastore.get --vsphere-host vc01.example.org \
 --name vm01.example.org

Using the vm.process.get vPoller method we can get a list of all
processes running in a Virtual Machine. Note, that we need to supply a
username and password when using the vm.process.get method, which
are used for authentication in the guest system.

$ vpoller-client --method vm.process.get --vsphere-host vc01.example.org \
 --name vm01.example.org --properties name,owner,pid,cmdLine \
 --guest-username root --guest-password p4ssw0rd

Note

The above example command uses the root user for authentication
in the guest system. It is recommended that you use a user
with restricted privileges when using the vm.process.get
vPoller method if security is a concern.

Datastore examples

Here is an example command which will discover all Datastore
managed objects from your vSphere environment:

$ vpoller-client --method datastore.discover --vsphere-host vc01.example.org

This example command below would return the summary.capacity
property for a specific Datastore object.

$ vpoller-client --method datastore.get --vsphere-host vc01.example.org \
 -name ds:///vmfs/volumes/5190e2a7-d2b7c58e-b1e2-90b11c29079d/ \
 --properties summary.capacity

This example command will give you all hosts, which are using a
specific Datastore.

$ vpoller-client --method datastore.host.get --vsphere-host vc01.example.org \
 --name ds:///vmfs/volumes/5190e2a7-d2b7c58e-b1e2-90b11c29079d/

Viewing established Sessions

vPoller can also be used for viewing the established
sessions to your vSphere hosts.

Note

Viewing vSphere sessions by unauthorized parties may be
considered as a security hole, as it may provide an attacker
with information such as Session IDs, which could be used for
spoofing a user’s session.

If security is a concern make sure that your vSphere Agents are
configured to use an account with restricted set of privileges,
which cannot view the established vSphere sessions.

Here is an example command that will return the established sessions
for your vSphere host:

$ vpoller-client --method session.get --vsphere-host vc01.example.org

Getting vSphere Events

With vPoller you can also retrieve vSphere events.

This is how you can retrieve the last registered event from your
vSphere host:

$ vpoller-client --method event.latest --vsphere-host vc01.example.org

Getting vSphere Alarms

Using the *.alarm.get vPoller methods we can retrieve the
triggered vSphere alarms on a Datacenter,
ClusterComputeResource, HostSystem, VirtualMachine and
Datastore level.

Here is how you could retrieve all triggered alarms for a Datacenter.

$ vpoller-client --method datacenter.alarm.get --vsphere-host vc01.example.org \
 --name MyDatacenter

An here is an example result from the above command, showing the
triggered alarms for our Datacenter.

{
 "success": 0,
 "result": [
 {
 "overallStatus": "red",
 "time": "2015-02-13 09:16:50.916096+00:00",
 "key": "alarm-4.host-30",
 "entity": "esxi01.example.org",
 "acknowledged": false,
 "acknowledgedByUser": null,
 "info": "Host memory usage"
 }
],
 "msg": "Successfully retrieved alarms"
}

Performance metrics

Note

If you are running a vSphere 6.0 environment and experience issues
with real-time performance metrics, make sure to check
[KB-2119264](http://kb.vmware.com/kb/2119264) for more details.

Using vPoller you can retrieve various performance metrics from
your VMware vSphere environment.

In the following examples we will see how we can use vPoller in order
to discover the supported performance metrics in our vSphere environment
and also how to retrieve real-time and historical statistics from
different performance providers - ESXi hosts, Virtual Machines,
Datastores, Clusters, etc.

For more information about the performance metrics in a VMware vSphere
environment, please make sure to check the
VMware vSphere API documentation [https://www.vmware.com/support/developer/vc-sdk/] and especially the
PerformanceManager documentation [http://pubs.vmware.com/vsphere-55/topic/com.vmware.wssdk.apiref.doc/vim.PerformanceManager.html] where you can find
information about the supported performance counters, the existing
counter groups, description of each counter, etc.

First, let’s see how to obtain all performance counters that are
supported in our vSphere environment. Using the perf.metric.info
vPoller method we can retrieve a list of all supported performance
counters from our vSphere environment.

$ vpoller-client --method perf.metric.info --vsphere-host vc01.example.org

The result of the above command should contain all performance metrics
which are supported on the VMware vSphere host vc01.example.org.

Below is an example of a single counter as returned from the
perf.metric.info vPoller method.

{
 "perDeviceLevel": 3,
 "level": 1,
 "key": 143,
 "nameInfo": {
 "label": "Usage",
 "key": "usage",
 "summary": "Network utilization (combined transmit-rates and receive-rates) during the interval"
 },
 "groupInfo": {
 "label": "Network",
 "key": "net",
 "summary": "Network"
 },
 "unitInfo": {
 "label": "KBps",
 "key": "kiloBytesPerSecond",
 "summary": "Kilobytes per second"
 },
 "statsType": "rate",
 "rollupType": "average"
 }

You can find a sample file with all performance metrics as
discovered on a VMware vSphere host in the
perf-metric-info.json example file [https://github.com/dnaeon/py-vpoller/blob/master/extra/performance-metrics/perf-metric-info.json].

In order to obtain information about the supported performance metrics
for a specific performance provider (e.g. ESXi host, Virtual Machine,
Datastore, etc.) you can use the respective *.perf.metric.info
vPoller methods, e.g. vm.perf.metric.info, host.perf.metric.info,
etc.

The following example shows how to get the available performance
metrics for a Virtual Machine:

$ vpoller-client --method vm.perf.metric.info --vsphere-host vc01.example.org \
 --name vm01.example.org

You can see an example result of using the vm.perf.metric.info
method in the vm-perf-metric-info.json example file [https://github.com/dnaeon/py-vpoller/blob/master/extra/performance-metrics/vm-perf-metric-info.json], which shows the
available performance metrics for a specific Virtual Machine.

In the vm-perf-metric-info.json example file [https://github.com/dnaeon/py-vpoller/blob/master/extra/performance-metrics/vm-perf-metric-info.json] you will see
that each discovered performance metric has a counterId and
instance attribute, e.g.:

{
 "counterId": "net.usage.kiloBytesPerSecond.average",
 "instance": "vmnic0"
}

The counterId part from the above example counter is comprised of
the <groupInfo.key>.<nameInfo.key>.<unitInfo.key>.<rollupType>
attributes from our counter as discovered by the perf.metric.info
vPoller method.

We can also request specific counters only when using the
*.perf.metric.info methods. For example if we are only interested
in the net.usage.kiloBytesPerSecond.average counter, then we would
execute this command instead, which would return all counters and
their instances for our performance provider:

$ vpoller-client --method vm.perf.metric.info --vsphere-host vc01.example.org \
 --name vm01.example.org --counter net.usage.kiloBytesPerSecond.average

And here’s an example result after executing the above command.

{
 "result": [
 {
 "counterId": "net.usage.kiloBytesPerSecond.average",
 "instance": "4000"
 },
 {
 "counterId": "net.usage.kiloBytesPerSecond.average",
 "instance": "vmnic0"
 },
 {
 "counterId": "net.usage.kiloBytesPerSecond.average",
 "instance": "vmnic1"
 },
 {
 "counterId": "net.usage.kiloBytesPerSecond.average",
 "instance": ""
 }
],
 "msg": "Successfully retrieved performance metrics",
 "success": 0
}

We can also get the existing historical performance intervals by
using the perf.interval.info vPoller method, e.g.:

$ vpoller-client --method perf.interval.info --vsphere-host vc01.example.org

On the screenshot below you can see an example of retrieving the
historical performance intervals on a vSphere host.

[image: _images/vpoller-perf-interval-info.jpg]
The historical performance intervals are used when we need to
retrieve historical metrics from performance providers.

Now, that we know how to get the available performance metrics for
our performance providers, let’s now see how to retrieve the
actual performance counters for them.

In the following example we will see how to get the CPU usage in MHz
for a specific Virtual Machine.

And here is how we would get three samples of the CPU usage in MHz
performance metric.

$ vpoller-client --method vm.perf.metric.get --vsphere-host vc01.example.org \
 --name vm01.example.org --max-sample 3 --counter cpu.usagemhz.megaHertz.average

Here is an example result of the above command.

[image: _images/vpoller-perf-metric-vm-cpu-usage.jpg]
We can also retrieve the performance metrics for an instance, e.g.
get the CPU usage per core.

If we want to retrieve the performance metrics for a specific
instance we would execute a similar command instead:

$ vpoller-client --method vm.perf.metric.get --vsphere-host vc01.example.org \
 --name vm01.example.org --counter cpu.usagemhz.megaHertz.average --max-sample 3 --instance 0

We could also retrieve some interesting statistics from our
Datacenters and Clusters as well.

The vim.Datacenter and vim.ClusterComputeResource
managed entities support historical statistics only, so in order to
retrieve any performance metrics from them we should specify a valid
historical performance interval.

In the following examples we will see how to retrieve performance
counter vmop.numPoweron.number.latest, which would give us the
number of the Virtual Machine power on operations for the past day.

$ vpoller-client --method datacenter.perf.metric.get --vsphere-host vc01.example.org \
 --name MyDatacenter --counter vmop.numPoweron.number.latest --perf-interval "Past day"

Another example showing how to get performance counter
mem.consumed.kiloBytes.average, which returns the amount of host
physical memory consumed by a virtual machine, host, or cluster.

$ vpoller-client --method host.perf.metric.get --vsphere-host vc01.example.org \
 --name esxi01.example.org --counter mem.consumed.kiloBytes.average

As our last examples we will see how to retrieve various performance
metrics for vim.Datastore managed entities.

Note

Some of the vim.Datastore performance metrics are retrieved
by using the datastore.perf.metric.get vPoller method, while
others are available via the host.perf.metric.get, where a
datastore metric is retrieved by using the Datastore instance.

A vim.Datastore performance provider by itself provides only
historical performance statistics.

Most of the real-time statistics (e.g. datastoreIops) are
accessed via a vim.HostSystem performance provider.

The example below shows how to retrieve the datastoreIops for a
specific datastore.

First we will discover all instances of performance counter
datastore.datastoreIops.number.average for our example
ESXi host esxi01.example.org.

$ vpoller-client --method host.perf.metric.info --vsphere-host vc01.example.org \
 --name esx01.example.org --counter datastore.datastoreIops.number.average

Example result from the above command is shown below, which contains
all instances of counter datastore.datastoreIops.number.average.

 {
 "success": 0,
 "result": [
 {
 "counterId": "datastore.datastoreIops.number.average",
 "instance": "5481d059-dbd6de3d-2215-d8d385bf2110"
 },
 {
 "counterId": "datastore.datastoreIops.number.average",
 "instance": "5485af07-7326ddc0-6afc-d8d385bf2110"
 },
 {
 "counterId": "datastore.datastoreIops.number.average",
 "instance": "5485af4f-4dbf72e3-4980-d8d385bf2110"
 }
],
 "msg": "Successfully retrieved performance metrics"
}

If we are interested in finding out the Datastore name for the
5481d059-dbd6de3d-2215-d8d385bf2110 instance from the above
example result we could use the datastore.get vPoller method to
do so. For example:

$ vpoller-client --method datastore.get --vsphere-host vc01.example.org \
 --name ds:///vmfs/volumes/5481d059-dbd6de3d-2215-d8d385bf2110/ --properties name

And the result from the above command would give us the Datastore name.

{
 "success": 0,
 "result": [
 {
 "name": "datastore1",
 "info.url": "ds:///vmfs/volumes/5481d059-dbd6de3d-2215-d8d385bf2110/"
 }
],
 "msg": "Successfully retrieved object properties"
}

Now, let’s get back to the datastoreIops metric and retrieve it.

$ vpoller-client --method host.perf.metric.get --vsphere-host vc01.example.org \
 --name esxi01.example.org --counter datastore.datastoreIops.number.average --instance 5481d059-dbd6de3d-2215-d8d385bf2110

And here is an example result from the above command:

{
 "success": 0,
 "result": [
 {
 "instance": "5481d059-dbd6de3d-2215-d8d385bf2110",
 "value": 84,
 "interval": 20,
 "counterId": "datastore.datastoreIops.number.average",
 "timestamp": "2015-02-10 15:48:40+00:00"
 }
],
 "msg": "Successfully retrieved performance metrics"
}

Using the API

In this document we will see some examples on how to use the
vPoller API.

You can use these examples for connecting your project to vPoller
and send task requests for processing.

Sending task requests for processing

Connecting your Python project to vPoller is easy.

If you only need to be able to talk to vPoller and send task requests
then using the VPollerClient class is the way to go.

The VPollerClient sends task requests to the vPoller Proxy,
which distributes the task requests to the vPoller Workers.

Here is how you can send task requests from your Python project
to vPoller for processing.

>>> from vpoller.client import VPollerClient
>>> msg = {'method': 'vm.discover', 'hostname': 'vc01.example.org'}
>>> client = VPollerClient(endpoint='tcp://localhost:10123')
>>> result = client.run(msg)
>>> print result

The above example code will send a task request for
discovering all Virtual Machine managed objects from the
vc01.example.org vSphere host.

And here is what the above example code does:

	Imports the VPollerClient class from the vpoller.client
module

	Creates a message that will be sent to the vPoller Proxy
endpoint. The message contains information such as the
method to be processed, the vSphere hostname, and any
additional details required for processing the task request.

	We instantiate a VPollerClient object and set the endpoint
to which the client will connect and send the task request for
processing.

	Using the run() method of a VPollerClient instance we
send the task request over the wire and wait for response.

The VPollerClient class comes with builtin mechanism for automatic
retry if it doesn’t receive a response after some period of time.

In order to control the retry and timeout settings of a
VPollerClient object you can instantiate a client object this way:

>>> client = VPollerClient(
... endpoint='tcp://localhost:10123',
... retries=1,
... timeout=1000
...)

Note, that the timeout argument used above is in milliseconds.

Here is another example which would get the runtime.powerState
property for a specific Virtual Machine:

>>> import json
>>> from vpoller.client import VPollerClient
>>> msg = {
... 'method': 'vm.get',
... 'hostname': 'vc01.example.org',
... 'name': 'vm01.example.org',
... 'properties': ['name', 'runtime.powerState']
... }
>>> client = VPollerClient(endpoint='tcp://localhost:10123')
>>> result = client.run(msg)
>>> print json.dumps(result, indent=4)
{
 "msg": "Successfully retrieved object properties",
 "result": [
 {
 "runtime.powerState": "poweredOn",
 "name": "vm01.example.org"
 }
],
 "success": 0
}

As you can see we have successfully retrieved the
runtime.powerState property for our Virtual Machine, which shows
that our Virtual Machine is powered on.

For a full list of supported vPoller methods which you can use,
please refer to the Supported methods by vPoller documentation.

You are also advised to check the vpoller.agent module [https://github.com/dnaeon/py-vpoller/blob/master/src/vpoller/agent.py], which
is pretty well documented and provides information about each
vPoller method and the expected message request in order to begin
processing the task.

Executing vPoller tasks locally

Using the VPollerClient class as we’ve seen in the previous
section of this document sends task requests to the
vPoller Proxy, which distributes the tasks to any connected
vPoller Worker.

This was a remote operation, where a client simply sends a task
request and waits for a response.

You could also use vPoller in order to execute tasks locally,
which means that no task is send over the wire and all the hard
work is done on the local system.

Here is an example of interfacing with the vSphere Agents, which
provides us with an interface to execute vPoller tasks locally.

The example below is equivalent to the examples in the previous
section, except for one thing - it will be executed locally
on the system running this code, and it will not be
processed by a remote worker.

>>> from vpoller.agent import VSphereAgent
>>> agent = VSphereAgent(
... user='root',
... pwd='p4ssw0rd',
... host='vc01.example.org'
...)
>>> agent.connect()
>>> result = agent.vm_discover(msg={})
>>> print result

Interfacing with vPoller from other languages

Connecting to vPoller from other languages is easy as well.

vPoller uses the ZeroMQ messaging library [http://zeromq.org/] as the communication
layer, so in theory every language that comes with ZeroMQ bindings
should be able to interface with vPoller.

You can find below a simple example of using Ruby [https://www.ruby-lang.org/en/] for sending a
task request to vPoller:

#!/usr/bin/env ruby

require 'json'
require 'rubygems'
require 'ffi-rzmq'

Message we send to vPoller
msg = {:method => "vm.discover", :hostname => "vc01.example.org"}

Create the ZeroMQ context and socket
context = ZMQ::Context.new(1)
socket = context.socket(ZMQ::REQ)

puts "Connecting to vPoller ..."
socket.connect("tcp://localhost:10123")

puts "Sending task request to vPoller ..."
socket.send_string(msg.to_json)

result = ''
socket.recv_string(result)

puts "Received reply from vPoller: #{result}"

You might also want to check the vpoller.client module [https://github.com/dnaeon/py-vpoller/blob/master/src/vpoller/client.py] for example
code that you can use in order to implement a VPollerClient class
in your language of choice.

vPoller Integration With Zabbix

One of the nice things about vPoller is that it can be easily
integrated with other systems.

In this documentation we will see how we can integrate vPoller with
Zabbix [http://www.zabbix.com/] in order to start monitoring our VMware vSphere environment.

Note

This document is about VMware monitoring with vPoller and
Zabbix, and NOT about VMware monitoring with stock Zabbix.

If you are looking for VMware monitoring with stock Zabbix,
please refer to the official Zabbix documentation [https://www.zabbix.com/documentation/2.2/manual/vm_monitoring].

Why use vPoller with Zabbix and not just use stock Zabbix for VMware monitoring?

There are many things that can be put here describing the reasons
and motivation why you might prefer having vPoller with Zabbix
integration instead of stock Zabbix, but eventually this would end
up being one long (and probably boring) story to write and tell.

You can read this post here [http://dnaeon.github.io/vmware-monitoring-with-zabbix-python-and-vpoller/], which outlines some very good reasons
why you might want to have vPoller with Zabbix instead of stock
Zabbix when it comes to VMware vSphere monitoring.

Prerequisites

This documentation assumes that you already have Zabbix installed
and configured.

Next thing you need to make sure is that you have vPoller installed,
configured and already running.

If you haven’t installed and configured vPoller yet, please
refer to the Installation of vPoller and Configuration of vPoller
documentations first.

Enabling the vPoller Helpers for Zabbix

In order to be able to integrate vPoller with Zabbix we need to
enable some of the vPoller helpers first.

Make sure that these vPoller helpers are enabled in your
vPoller Workers:

	vpoller.helpers.zabbix

	vpoller.helpers.czabbix

For more information about how to enable the helpers in your
vPoller Workers, please refer to the vPoller Helpers documentation.

Importing the vPoller templates in Zabbix

You can grab the latest vPoller templates for Zabbix [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/templates] from the Github
repo of vPoller.

Note

Some of the Zabbix items from the vPoller templates are disabled
by default. It is recommended that you review each vPoller
template and enable or disable the items that you need or
don’t need at all.

In the vPoller templates for Zabbix [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/templates] directory you will find two
directories:

	vpoller-templates-externalchecks - contains legacy templates to
be used only with Zabbix external scripts

	vpoller-templates-native - contains the templates with native
vPoller support for Zabbix. It is recommended that you always use
the native vPoller support for Zabbix.

	vpoller-templates-native-2.4 - same as the
vpoller-templates-native templates, but for Zabbix 2.4.x releases.

Once you import the templates you should see the newly imported
vPoller templates.

[image: _images/vpoller-zabbix-templates.jpg]

Native vPoller support for Zabbix

Native vPoller support for Zabbix makes it possible for
Zabbix to talk natively to vPoller via a Zabbix loadable module [https://www.zabbix.com/documentation/2.2/manual/config/items/loadablemodules]

Native vPoller support for Zabbix is available only for Zabbix
release versions 2.2.x or above, as loadable modules in Zabbix
were introduced since the 2.2.x release of Zabbix.

Now, let’s see how to build, install and configure the vPoller
loadable module for Zabbix.

First, make sure that you have the ZeroMQ 4.x library [https://github.com/zeromq/zeromq4-x] installed
as the vPoller loadable module for Zabbix is linked against it.

Here is how to install the ZeroMQ 4.x library [https://github.com/zeromq/zeromq4-x] on your system
from source:

$ git clone https://github.com/zeromq/zeromq4-x.git
$ cd zeromq4-x
$./autogen.sh
$./configure
$ make && sudo make install && make clean
$ sudo ldconfig

Next thing you need to do is get the Zabbix source package for your
Zabbix release from the Zabbix Download page [http://www.zabbix.com/download.php]. We need the
source package of Zabbix in order to build the vPoller loadable
module.

Get the source package for your Zabbix release. For instance if you
are running Zabbix version 2.2.5 you should download the source
package for version 2.2.5 of Zabbix.

In the example commands below we are using the source package for
Zabbix version 2.2.5.

$ tar zxvf zabbix-2.2.5.tar.gz
$ cd zabbix-2.2.5
$./configure

The next step we need to do is to grab the
vPoller loadable module for Zabbix [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/vpoller-module] from the
Github repo of vPoller [https://github.com/dnaeon/py-vpoller] and place the module in the
zabbix-2.2.5/src/modules directory where you have unpacked the
Zabbix source package.

$ cp -a py-vpoller/extra/zabbix/vpoller-module zabbix-2.2.5/src/modules

Building the vPoller module for Zabbix is now easy.

$ cd zabbix-2.2.5/src/modules/vpoller-module
$ make

Running the make(1) command will create the shared library
vpoller.so, which can now be loaded by your Zabbix Server,
Proxy and Agents.

Let’s now load the vpoller.so module in the Zabbix Server during
startup. In order to load the module you need to edit your
zabbix_server.conf file and update the LoadModulePath and
LoadModule configuration options. Below is an example snippet
from the zabbix_server.conf file, which loads the vpoller.so
module.

####### LOADABLE MODULES #######

Option: LoadModulePath
Full path to location of server modules.
Default depends on compilation options.
#
Mandatory: no
Default:
LoadModulePath=/usr/local/lib/zabbix

Option: LoadModule
Module to load at server startup. Modules are used to extend functionality of the server.
Format: LoadModule=<module.so>
The modules must be located in directory specified by LoadModulePath.
It is allowed to include multiple LoadModule parameters.
#
Mandatory: no
Default:
LoadModule=vpoller.so

Make sure that you copy the vpoller.so module, which you’ve built
to your LoadModulePath directory.

$ sudo cp zabbix-2.2.5/src/modules/vpoller-module/vpoller.so /usr/local/lib/zabbix

Once ready with the configuration changes make sure to restart any
service for which you’ve just updated the config file.

You can verify that the vpoller.so module has been successfully
loaded by inspecting your Zabbix logs. In the log snippet below
you can see that our Zabbix Server has successfully loaded
the vpoller.so module.

13352:20140910:080628.011 Starting Zabbix Server. Zabbix 2.2.5 (revision 47411).
13352:20140910:080628.012 ****** Enabled features ******
13352:20140910:080628.012 SNMP monitoring: YES
13352:20140910:080628.012 IPMI monitoring: YES
13352:20140910:080628.012 WEB monitoring: YES
13352:20140910:080628.012 VMware monitoring: YES
13352:20140910:080628.012 Jabber notifications: YES
13352:20140910:080628.012 Ez Texting notifications: YES
13352:20140910:080628.012 ODBC: YES
13352:20140910:080628.012 SSH2 support: YES
13352:20140910:080628.012 IPv6 support: YES
13352:20140910:080628.012 ******************************
13352:20140910:080628.012 using configuration file: /etc/zabbix/zabbix_server.conf
13352:20140910:080628.013 Loading vPoller module configuration file /etc/zabbix/vpoller_module.conf
13352:20140910:080628.015 loaded modules: vpoller.so

The vPoller loadable module for Zabbix can use an optional
configuration file which allows you to manage some of the vPoller
settings, such as the task timeout, retries and endpoint of the
vPoller Proxy to which task requests are being sent.

The configuration of the vpoller.so module resides in the
/etc/zabbix/vpoller_module.conf file and you can find a sample
configuration file in the vPoller loadable module for Zabbix [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/vpoller-module]
directory from the Github repo.

The Zabbix vPoller Key

Once loaded the vPoller module for Zabbix exposes a single key of
type Simple check that can be used by your Zabbix items and is
called vpoller[*].

The vpoller[*] Zabbix key has the following form:

vpoller[method, hostname, name, properties, <key>, <username>, <password>, <counter-name>, <instance>, <perf-interval>]

And the parameters that vpoller[*] key expects are these.

	Parameter

	Description

	Required

	method

	vPoller method to be processed

	True

	hostname

	VMware vSphere server hostname

	True

	name

	Name of the vSphere object (e.g. VM name, ESXi name)

	True

	properties

	vSphere object properties to be collected by vPoller

	True

	<key>

	Additional information to be passed to vPoller

	False

	<username>

	Username to use when logging into the guest system

	False

	<password>

	Password to use when logging into the guest system

	False

	<counter-name>

	Performance counter name to be retrieved

	False

	<instance>

	Performance counter instance

	False

	<perf-interval>

	Historical performance interval

	False

Note that some of the above parameters are mandatory and some are
optional depending on what vPoller method you are requesting to be
processed.

If your Zabbix Agents are also loading the vpoller.so module
you can use the zabbix_get(8) tool from the command-line in order
to send task requests to vPoller.

Here is one example that uses zabbix_get(8) in order check the
power state of VM using the vpoller[*] key.

$ zabbix_get -s 127.0.0.1 -p 10050 -k "vpoller[vm.get, vc01.example.org, ns01.example.org, runtime.powerState]"
"poweredOn"

Setting up vPoller externalscripts for Zabbix

Note

This section of the documentation provides instructions
how to install the vPoller externalscripts in Zabbix.

It is recommended that you always use the
native vPoller support for Zabbix when integrating vPoller
with Zabbix, and use externalscripts only if you cannot
have the native vPoller support for Zabbix, e.g. you are
running an older Zabbix release which doesn’t support loadable
modules or the loadable module is not available for your platform.

Get the vpoller-zabbix and cvpoller-zabbix wrapper scripts
from the links below and place them in your Zabbix
externalscripts directory:

	https://github.com/dnaeon/py-vpoller/blob/master/extra/zabbix/externalscripts/vpoller-zabbix

	https://github.com/dnaeon/py-vpoller/blob/master/extra/zabbix/externalscripts/cvpoller-zabbix

You can also find user-contributed vpoller-zabbix and
cvpoller-zabbix wrapper scripts, which come with more features
and safety checks at the links below:

	https://github.com/dnaeon/py-vpoller/blob/master/contrib/zabbix/externalscripts/vpoller-zabbix

	https://github.com/dnaeon/py-vpoller/blob/master/contrib/zabbix/externalscripts/cvpoller-zabbix

Using any of these wrapper scripts should be fine.

Place the vpoller-zabbix and cvpoller-zabbix wrapper scripts
into your Zabbix externalscripts directory and make sure they
are executable as well:

$ sudo chmod 0755 $externalscripts/vpoller-zabbix $externalscripts/cvpoller-zabbix

Monitoring your VMware environment with vPoller and Zabbix

Time to start monitoring our VMware vSphere environment with vPoller
and Zabbix. Let’s go ahead and add a VMware vCenter server and
get some data out of it.

Login to your Zabbix frontend and navigate to
Configuration -> Hosts, then at the top-right corner click on the
Create host button. Fill in the hostname of the vCenter we are
going to monitor and add it to a group, e.g. vCenters in my case.

[image: _images/vpoller-zabbix-add-host-1.jpg]
Next, click on the Templates and link the
Template VMware vSphere - vPoller template if you are using
vPoller with external checks support or use the
Template VMware vSphere - vPoller Native template for native
vPoller support in Zabbix.

[image: _images/vpoller-zabbix-add-host-2.jpg]
The last thing we need to do is add a Zabbix macro to our
vSphere host. Navigate to the Macros tab and add the
{$VSPHERE.HOST} macro which value should be the hostname of the
vSphere host you are adding to Zabbix.

[image: _images/vpoller-zabbix-add-host-3.jpg]
Once done, click the Save button and you are ready.

Soon enough Zabbix will start sending requests to vPoller which would
discover your vSphere objects (ESXi hosts, Virtual Machines,
Datastores, etc) and start monitoring them.

Importing vSphere objects as regular Zabbix hosts

In the previous section of this documentation we have seen how we
can use Zabbix with vPoller working together in order to perform
monitoring of our VMware vSphere environment.

The way we did it is by using vPoller in order to discover VMware
vSphere objects and then use the Zabbix Low-level discovery [https://www.zabbix.com/documentation/2.2/manual/discovery/low_level_discovery]
protocol in order to create hosts based on the discovered data.

While Zabbix Low-level discovery is a powerful feature of Zabbix
which you could use in order to automate the process of discovering
and adding hosts to your Zabbix server, it still has some limitations
and disadvantages.

One disadvantage of using Zabbix LLD is that once a host is being
created by a Zabbix Discovery Rule that host becomes immutable -
you cannot manually change or update anything on the host,
unless these changes come from the discovery rule or the host profile
applied to the host.

You can imagine that this might be a bit of frustrating when you want
to group your hosts in a better way for example, which obviously you
cannot do since this host is now immutable.

Linking additional templates to a discovered host is also not
possible, which is another big issue. Now that you’ve discovered your
VMware Virtual Machines you probably wanted to link some additional
templates to them, but you will soon discover that this is not
possible either.

You cannot even add more interfaces to your hosts if needed…
Like mentioned earlier - your host is immutable, so that means
no changes at all after your hosts have been discovered with a
Zabbix LLD rule.

So, what can we do about it?

Well, we can solve this issue! And vPoller is going to help us do that! :)

We are going to use the zabbix-vsphere-import [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/vsphere-import] tool, which can
discover and import vSphere objects as regular Zabbix hosts -
that means that all vSphere objects (ESXi hosts, Virtual Machines,
Datastores, etc.) which were imported by the zabbix-vsphere-import [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/vsphere-import]
tool would be regular Zabbix hosts, which you could update -
adding the host to groups you want, linking arbitrary
templates to it, etc.

First, let’s create the config file which zabbix-vsphere-import [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/vsphere-import]
will be using. Below is an example config file used by
zabbix-vsphere-import tool:

vsphere:
 hostname: vc01.example.org

vpoller:
 endpoint: tcp://localhost:10123
 retries: 3
 timeout: 3000

zabbix:
 hostname: http://zabbix.example.org/zabbix
 username: Admin
 password: zabbix

 vsphere_object_host:
 proxy: zbx-proxy.example.org
 templates:
 - Template VMware vSphere Hypervisor - vPoller Native
 macros:
 VSPHERE.HOST: vc01.example.org
 groups:
 - Hypervisors

 vsphere_object_vm:
 templates:
 - Template VMware vSphere Virtual Machine - vPoller Native
 macros:
 VSPHERE.HOST: vc01.example.org
 groups:
 - Virtual Machines

 vsphere_object_datastore:
 templates:
 - Template VMware vSphere Datastore - vPoller Native
 macros:
 VSPHERE.HOST: vc01.example.org
 groups:
 - Datastores

In the example config file above we have defined various config
entries - Zabbix server, Zabbix Proxy which will be used,
vPoller settings and also templates to be linked for the various
vSphere objects.

As you can see the format of the configuration file allows for
flexible setup of your discovered vSphere objects.

Time to import our vSphere objects as regular Zabbix hosts.
To do that simply execute the command below:

$ zabbix-vsphere-import -f zabbix-vsphere-import.yaml

Here is an example output of running the zabbix-vsphere-import [https://github.com/dnaeon/py-vpoller/tree/master/extra/zabbix/vsphere-import]
tool:

$ zabbix-vsphere-import -f zabbix-vsphere-import.yaml
[2014-09-06 10:33:28,420] - INFO - Connecting to Zabbix server at http://zabbix.example.org/zabbix
[2014-09-06 10:33:28,537] - INFO - [vSphere ClusterComputeResource] Importing objects to Zabbix
[2014-09-06 10:33:28,814] - INFO - [vSphere ClusterComputeResource] Number of objects to be imported: 1
[2014-09-06 10:33:28,814] - INFO - [vSphere ClusterComputeResource] Creating Zabbix host group 'cluster01'
[2014-09-06 10:33:28,904] - INFO - [vSphere ClusterComputeResource] Import of objects completed
[2014-09-06 10:33:28,904] - INFO - [vSphere HostSystem] Importing objects to Zabbix
[2014-09-06 10:33:29,122] - INFO - [vSphere HostSystem] Number of objects to be imported: 2
[2014-09-06 10:33:29,289] - INFO - [vSphere HostSystem] Creating Zabbix host 'esxi01.example.org'
[2014-09-06 10:33:30,204] - INFO - [vSphere HostSystem] Creating Zabbix host 'esxi02.example.org'
[2014-09-06 10:33:30,658] - INFO - [vSphere HostSystem] Import of objects completed
[2014-09-06 10:33:30,658] - INFO - [vSphere VirtualMachine] Importing objects to Zabbix
[2014-09-06 10:33:30,775] - INFO - [vSphere VirtualMachine] Number of objects to be imported: 9
[2014-09-06 10:33:30,935] - WARNING - Unable to find Zabbix host group 'Virtual Machines'
[2014-09-06 10:33:30,936] - INFO - Creating Zabbix host group 'Virtual Machines'
[2014-09-06 10:33:33,965] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'ubuntu-14.04-dev'
[2014-09-06 10:33:34,956] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'centos-6.5-amd64'
[2014-09-06 10:33:35,945] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'sof-vc0-mnik'
[2014-09-06 10:33:36,441] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'test-vm-01'
[2014-09-06 10:33:36,934] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'sof-dev-d7-mnik'
[2014-09-06 10:33:37,432] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'ubuntu-12.04-desktop'
[2014-09-06 10:33:43,430] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'zabbix-vm-2'
[2014-09-06 10:33:43,929] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'zabbix-vm-1'
[2014-09-06 10:33:44,432] - INFO - [vSphere VirtualMachine] Creating Zabbix host 'VMware vCenter Server Appliance'
[2014-09-06 10:33:44,937] - INFO - [vSphere VirtualMachine] Import of objects completed
[2014-09-06 10:33:44,937] - INFO - [vSphere Datastore] Importing objects to Zabbix
[2014-09-06 10:33:45,046] - INFO - [vSphere Datastore] Number of objects to be imported: 1
[2014-09-06 10:33:45,339] - INFO - [vSphere Datastore] Creating host 'ds:///vmfs/volumes/5190e2a7-d2b7c58e-b1e2-90b11c29079d/'
[2014-09-06 10:33:45,607] - INFO - [vSphere Datastore] Import of objects completed

Generally you would want to run the import perhaps once an hour
(e.g. from cron(8)), so that your Zabbix server is in sync with
your vSphere environment.

If you are importing your vSphere objects in Zabbix using the
zabbix-vsphere-import tool make sure to disable any
Zabbix LLD discovery rules in order to avoid any conflicts between
them.

Agent-less process monitoring in Virtual Machines

Another cool feature of vPoller is the ability to perform process
monitoring inside VMware Virtual Machines without the need of having
Zabbix Agents (or any other software) installed and running on your
systems.

This can be quite handy in situations where you don’t have the
Zabbix Agents installed or you are not even allowed to install any
software on your Virtual Machines.

A good example is a service provider where customers request
that specific process availability be monitored in Virtual Machines,
but don’t want to have any third-party software installed on the
customers’ systems.

In case you are wondering how we perform the agent-less process
monitoring of VMware Virtual Machines using vPoller, you may want to
check the vSphere API documentation for GuestProcessManager() [http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.wssdk.apiref.doc/vim.vm.guest.ProcessManager.html].

Let’s see now how we can use vPoller with Zabbix integration in order
to provide agent-less process monitoring for our Virtual Machines.

First we will create a Zabbix item that will monitor the
total number of processes in a Virtual Machine and then we will see
how we can monitor the availability for certain processes.

The Zabbix key that we will use for agent-less process
monitoring is of type Simple check and has the following format:

vpoller["vm.process.get", "{$VSPHERE.HOST}", "{HOST.HOST}", "cmdLine", "", username, password]

In the above Zabbix key the username and password parameters
should be a valid username and password that can login to the guest
system.

On the screenshot below we are creating a new Zabbix item that will
monitor the total number of processes in our Virtual Machine.

[image: _images/vpoller-zabbix-processes-1.jpg]
The key that we’ve used for monitoring the total number of processes
in our guest system is this:

vpoller["vm.process.get", "{$VSPHERE.HOST}", "{HOST.HOST}", "cmdLine", "", root, p4ssw0rd]

We can also create a trigger for our item which will go into certain
state whenever the total number of processes exceeds a certain value.

[image: _images/vpoller-zabbix-processes-2.jpg]
Now, let’s add a second item which this time will be monitoring the
number of Apache processes in our Virtual Machine.

[image: _images/vpoller-zabbix-processes-3.jpg]
On the screenshot above we have used the following
Zabbix key in order to monitor the number of Apache processes in our
Virtual Machine.

vpoller["vm.process.get", "{$VSPHERE.HOST}", "{HOST.HOST}", "cmdLine", "/usr/sbin/apache2", root, p4ssw0rd]

Should we want to be notified in case our process is not running we can
create a trigger for our item and set the severity level of the issue.

[image: _images/vpoller-zabbix-processes-4.jpg]

Note

It is recommended that you use a system account with restricted
set of privileges when you perform agent-less process monitoring
with vPoller and Zabbix.

You may also want to consider creating a global Zabbix macro
for the system account username and password and use it in your
Zabbix keys, without having the need to include the username and
password in every single process-monitoring item that you
want to have.

Global macros in Zabbix can be created by navigating to
Administration -> General -> Macros in your Zabbix Dashboard.

As a final example on agent-less process monitoring with vPoller and
Zabbix we will see how to query the number of process from the
command-line using the zabbix_get(8) tool.

Here’s how to query the total number of processes in a Virtual
Machine from the command-line:

$ zabbix_get -s 127.0.0.1 \
 -p 10050 \
 -k 'vpoller[vm.process.get, vc01.example.org, vm01.example.org, cmdLine, "", root, p4ssw0rd]'

And this is how to query the number of certain processes in a Virtual
Machine using zabbix_get(8):

$ zabbix_get -s 127.0.0.1 \
 -p 10050 \
 -k 'vpoller[vm.process.get, vc01.example.org, vm01.example.org, cmdLine, "/usr/sbin/apache2", root, p4ssw0rd]'

Example screenshots

Let’s see some example screenshots of Zabbix monitoring a
VMware vSphere environment using vPoller.

Checking the latest data of our vCenter server in Zabbix:

[image: _images/vpoller-zabbix-data-1.jpg]
Let’s see the latest data for some of our ESXi hosts:

[image: _images/vpoller-zabbix-data-2.jpg]
Another screenshot showing information about our ESXi host:

[image: _images/vpoller-zabbix-data-3.jpg]
And another screenshot showing hardware related information about
our ESXi host:

[image: _images/vpoller-zabbix-data-4.jpg]
Let’s check the latest data for one of our Virtual Machines:

[image: _images/vpoller-zabbix-data-5.jpg]
A screenshot showing information about the file systems in
Virtual Machine:

[image: _images/vpoller-zabbix-data-6.jpg]
Another screenshot showing general information about a Virtual
Machine:

[image: _images/vpoller-zabbix-data-7.jpg]
Another screenshot showing information about the memory and
VMware Tools for our Virtual Machine:

[image: _images/vpoller-zabbix-data-8.jpg]
On the screenshot below you can see the discovered triggered alarms
for one of our vSphere Datacenters:

[image: _images/vpoller-datacenter-alarms.jpg]
The screenshot below shows the Virtual Machine operations for the
past day for one of our VMware vSphere Datacenters:

[image: _images/vpoller-datacenter-vm-operations.jpg]
From the screenshot below we can see the data traffic for one of
our Virtual Machines.

[image: _images/vpoller-vm-data-traffic.jpg]

Supported methods by vPoller

The table below lists the supported methods by vPoller along
with description for each of them.

	vPoller Method

	Description

	about

	Get about information for a vSphere host

	event.latest

	Get the latest registered event from a vSphere host

	session.get

	Get the established vSphere sessions

	perf.metric.info

	Get info about all supported performance counters by the vSphere host

	perf.interval.info

	Get the existing performance historical intervals on the vSphere host

	net.discover

	Discover all vim.Network managed objects

	net.get

	Get properties of a vim.Network managed object

	net.host.get

	Get all HostSystems using a specific vim.Network

	net.vm.get

	Get all VirtualMachines using a specific vim.Network

	datacenter.discover

	Discover all vim.Datacenter managed objects

	datacenter.get

	Get properties of a vim.Datacenter managed object

	datacenter.alarm.get

	Get all alarms for a vim.Datacenter managed object

	datacenter.perf.metric.info

	Get the available performance counters for a vim.Datacenter object

	datacenter.perf.metric.get

	Retrieve performance metrics for a vim.Datacenter object

	cluster.discover

	Discover all vim.ClusterComputeResource managed objects

	cluster.get

	Get properties of a vim.ClusterComputeResource managed object

	cluster.alarm.get

	Get all alarms for a vim.ClusterComputeResource managed object

	cluster.perf.metric.info

	Get the available performance counters for a vim.ClusterComputeResource

	cluster.perf.metric.get

	Retrieve performance metrics for a vim.ClusterComputeResource object

	resource.pool.discover

	Discover all vim.ResourcePool managed objects

	resource.pool.get

	Get properties of a vim.ResourcePool managed object

	host.discover

	Discover all vim.HostSystem managed objects

	host.get

	Get properties of a vim.HostSystem managed object

	host.alarm.get

	Get all alarms for a vim.HostSystem managed object

	host.cluster.get

	Get the cluster a vim.HostSystem managed object

	host.vm.get

	Get all Virtual Machines registered on a vim.HostSystem

	host.net.get

	Get all Networks available for a specific vim.HostSystem

	host.datastore.get

	Get all datastores available to a vim.HostSystem

	host.perf.metric.info

	Get the available performance counters for a HostSystem object

	host.perf.metric.get

	Retrieve performance metrics for a vim.HostSystem object

	vm.alarm.get

	Get all alarms for a vim.VirtualMachine managed object

	vm.discover

	Discover all vim.VirtualMachine managed objects

	vm.disk.discover

	Discover all guest disks on a vim.VirtualMachine object

	vm.guest.net.get

	Discover all network adapters on a vim.VirtualMachine object

	vm.net.get

	Get all Networks used by a specific vim.VirtualMachine

	vm.get

	Get properties of a vim.VirtualMachine object

	vm.datastore.get

	Get all datastore used by a vim.VirtualMachine object

	vm.disk.get

	Get information about a guest disk for a vim.VirtualMachine object

	vm.host.get

	Get the HostSystem in which a specified vim.VirtualMachine is running on

	vm.process.get

	Get the running processes in a vim.VirtualMachine

	vm.cpu.usage.percent

	Get the CPU usage in percentage of a Virtual Machine

	vm.perf.metric.info

	Get the available performance counters for a VirtualMachine object

	vm.perf.metric.get

	Retrieve performance metrics for a vim.VirtualMachine object

	vm.snapshot.get

	Get all snapshots for a vim.VirtualMachine object

	datastore.alarm.get

	Get all alarms for a vim.Datastore managed object

	datastore.discover

	Discover all vim.Datastore objects

	datastore.get

	Get properties of a vim.Datastore object

	datastore.host.get

	Get all HostSystem objects using a specific datastore

	datastore.vm.get

	Get all VirtualMachine objects using a specific datastore

	datastore.perf.metric.info

	Get the available performance counters for a vim.Datastore object

	datastore.perf.metric.get

	Retrieve performance metrics for a vim.Datastore object

	vsan.health.get

	Get VSAN health state for a vim.HostSystem object

Terminology

	vPoller Proxy

	ZeroMQ proxy which distributes tasks and load balances client
requests. The application running the vPoller Proxy is
vpoller-proxy.

	vPoller Worker

	Worker application which processes tasks, such as discovery and
polling of vSphere object properties. The vPoller Worker
receives new tasks for processing from the backend endpoint
of a vPoller Proxy. The application running the
vPoller Worker is vpoller-worker.

	vPoller Client

	Client application used for sending task requests and receiving
of results. The vPoller Client sends task requests to the
frontend endpoint of a vPoller Proxy. The application
running the vPoller Client is vpoller-client and
vpoller-cclient, which is the client application written in C.

	vSphere Agent

	The vSphere Agents are the ones that take care of establishing
connections to the vSphere hosts and perform discovery and polling
of vSphere objects. The vSphere Agents are running on the
vPoller Workers and a single vPoller Worker can have
as many vSphere Agents as you’d like. vSphere Agents are
configured and managed by the vconnector-cli tool.

On the image below you can see how each vPoller component relates to
the others.

[image: _images/vpoller.png]
Here is what happens when you send a client task request:

	A vPoller Client sends a task request to the
frontend endpoint of a vPoller Proxy.

	Task request is received on the vPoller Proxy and is
dispatched to any connected vPoller Workers on the backend
endpoint.

	The task request is received on the vPoller Worker and given
to a vSphere Agent which is taking care of the requested
vSphere host for processing the request through the VMware
vSphere API.

	The vSphere Agent returns any result from the operation to the
vPoller Worker which in turn sends the result through the
vPoller Proxy back to the client which requested the task.

Index

 _images/vpoller-datacenter-vm-operations.jpg
GRAPHS

Virtual Machine Operations (Past Day) Group [Datacenters | Host Graph |Virtual Machine Operations (Past Day)
[Zoom: 1h 2h 3h Al 23 Feb 2015 11:10 - 23 Feb 2015 12:10 (now!)
<] @ Il

< 1h | 1h h (ed

“wmem: Virtual Machine Operations (Past Day) (1h)
80

70
60
50
40
) | R RGN SRR A skttt bbbttt o sbklratlednatakadtedatniadainabadalalaba kil

20

23.0211:10 %
1112
11:13
1114
1115
11:16
1117
11:18
1119
11:20
11:21
1n:22
11:23
1124
11:25
11:26
1127
11:28
11:29
11:30
1131
11:32
11:33
11:34
11:35
11:36
11:37
11:38
11:39
11:40
11:41
11:42
11:43
1144
11:45
11:46
11:47
11:48
11:49
11:50
1151
1152
1153
11554
1155
1156
1187
11:58
11:59
12:00
12:01
12:02
12:03
12:04
12:05
12:06
12:07
12:08
12:09

23.0212:10

VM power on count (Past Day) [avg] 75 75 5
VM power off count (Past Day) [avg] 20 20 20
B WM suspend count (Past Day) [E)] 3 3 3

wBHE

Detafrom history

_images/vpoller-perf-interval-info.jpg
mnikolov at mnikolov-laptop in ~/PROJECTS/vmware/py-vpoller on git:master workon py-vpoller

§ vpoller-client --method perf.interval.info --vsphere-host (UG | o '
{

“succes:
"result
i
ey
“samplingPeriod”: 300,
“length": 86400,
“enabled": true,
“level": 1,
"Past day"

"level": 1,
“"name”: "Past week"
1
{
ingPeriod": 7200,
2592000,
"level"
“name”: "Past month"
1
{
"key": 4,
"samplingPeriod": 86400,
"length": 31536000,
: true,
1,
"Past year"
¥
1,
"msg": "Successfully retrieved performance historical intervals”

mnikolov at mnikolov-laptop in ~/PROJECTS/vmware/py-vpoller on git:master workon py-vpoller

$
[0] 1:emacs- 2:bash 3:emacsclient 4:bash 5:python 6:python 7:bash*

_images/vpoller-datacenter-alarms.jpg
Dashboard | Overview Triggers | Events = Graphs | Screens = Maps @ Discovery @ IT sen

Dashboard » Latest data » Dashboard » Latest data » User profile
TEST DATA =]

Items Group | Datacenters v | Host [all v

= Host Name * Last value Change
= Alarms (16 Items)
" alarm: vSphere HA virtual machine failover failed 17 Feb 2015 14:52:25 red = History.
alarm: vSphere HA virtual machine failover failed 17 Feb 2015 14:52:15 red - History
3 alarm; vSphere HA virtual machine failover failed 17 Feb 2015 14:52:23 red - History.
n alarm; vSphere HA virtual machine failover failed 17 Feb 2015 14:52: 14 red & History.

| alarm: vSphere HA virtual machine failover failed 17 Feb 2015 14:52;28 red - History

_images/vpoller-zabbix-add-host-1.jpg
Host

Templates

M1 | Macros

Host.

ventory

Host name
Visible name

Groups

Agent interfaces

SNMP interfaces

IMX interfaces

IPMI interfaces

Monitored by proxy

Status

sof-veo-mnik

sof-veo-mnik

In groups

Other groups

Datastores
Discovered hosts
Hypervisors
Linux servers
Templates
Virtual machines
Zabbix servers

New group
1P address DNS name Comnect o Port
ks 127.0.0.1 P | DNs 10050

Add

Add

Add

Add

(no proxy) ¥

Monitored ¥

Default

O]

Remove

_images/vpoller-zabbix-add-host-2.jpg
Host.

Templates

1M1 | Macros | Host

ventory

Linked templates Name

Template VMware vSphere - vPoller

Action

Unlink Unlink and clear

Link new templates

type here to search

Add

["save | [clone | Fullclone

Delete

cancel

_images/vpoller-perf-metric-vm-cpu-usage.jpg
mnikolov at mnikolov-laptop in ~/PROJECTS/vmware/py-vpoller exited 136 on i
$ vpoller-client --method vm.perf.metric.get --vsphere-host sof-vc@-mnik --name vmGl.example.org --counter cpu.usagemhz.megaHertz.average --max-sample 3 | jq

{

“result": [

{

“counterl

20,
257,
“ingtance™: i

20,
513,
“instance: "

mnikolov at mnikolov-laptop in ~/PROJECTS/vmware/py-vpoller on git:master workon py3.d-venv

s

“cpu.usagenhz .megaHertz.
"2015-05-11 12:27:00+00:

“cpu.usagenhz .megaHertz .
12015-05-11 12:27:20+00:

“cpu.usagenhz .megaHertz.
"2015-05-11 12:27:40+00:

average",
60",

average",
09",

average",
00",

:master workon py3.4-venv

_images/vpoller-vm-data-traffic.jpg
Data traffic

Group [Virtual Machines v

Host

Graph [Data traffic

Zoom: 1h 2h 3h All

23 Feb 2015 11;00 - 23 Feb 2015 15:36 (now!)

< B

3

w1 [10 » ah (feed)
: Data traffic (4h 36m 47s)
300 KBps.
250 KBps. 1
200 KBps.
150 KBps.
100 KBps:
50 KBps
A2 288888 ¥R R8LE22888RSYRINSE L ERIYRIRNEEe=nE RS Yangse=2nl8s8 B
e i el il = A e i S AR AL S AR A el ey S S e e R S e S B S i e S R e R R S S s s S S
N 5
g)
8 &
last min avg max
M Datareceiverate [avg) 84KBps 61KBps 91.2KBps 145KBps
B Datatransmit rate [avg] 255KBps 220KBps 251.5KBps 286 KBps

_images/vpoller-zabbix-add-host-3.jpg
Host | Templates | 1PMI | Macros | Host inventory
Macro Value
{§VSPHERE HOST} = | sof-veo-mik Remove
Add
save | | clone | Fullclone | pelete | cancel

_images/vpoller-zabbix-data-1.jpg
Dashboard = Overvi

History: Dashboard » Configuration of hosts » Latest data » History » Latest data

TEST DATA
Items Group Host

Web Triggers | Evel

& Clusters (1 Item)

Status of "clustero1” cluster 29 Apr 2014 12:43:00 green - History.
= Datacenters (1 Item)
Status of 'Sofia” datacenter 29 Apr 2014 12:43:01 aray - History.

© Events (1 Item)

VMware vSphere Events 29 Apr 2014 12:43:27 User root@10 logged out (login time: T... - History

© General (7 Items)
Host Availability 29 Apr 2014 12:43:02 1 - Graph
VMware vSphere API Version 29 Apr 2014 12:37:26 51 - History
VMware vSphere FullName 29 Apr 2014 12:37:28 VMware vCenter Server 5.1.0 build-947673 - History
VMware vSphere Name 29 Apr 2014 12:37:29 VMware vCenter Server - History
VMware vSphere OS Type 29 Apr 2014 12:37:30 linux-x64 - History
VMware vSphere Vendor 29 Apr 2014 12:37:31 VMware, Inc. - History

VMware vSphere Version 29 Apr 2014 12:37:32 5.1.0 - History.

_images/vpoller-zabbix-data-2.jpg
Dashboard = Overvi Eve Graphs = Screens = Maps = Discovery = IT services

+ Configuration of items » Dashboard » Configuration of templates » Configuration of items » Latest data
TEST DATA

Items

 CPU (9 Items)

Group [Hypervisors

v Host [sof-2

CPU Cores 29 Apr 2014 12:38:17 6
CPU Fraquency 29 Apr 2014 12:38:18 1.9 GHz

CPU Packages 29 Apr 2014 12:38:19 1

CPU Power Management Policy 29 Apr 2014 12:38:20 Not supported

CPU Power Management Support 29 Apr 2014 12:38:21 Enhanced Intel SpeedStep(R)
CPU Threads 29 Apr 2014 12:38:22 12

CPU Utilization (Percentage) 29 Apr 2014 13:33:23 671

Distributed CPU fairmess 29 Apr 2014 13:33:24 1.62 KHz

Overall CPU Usage 29 Apr 2014 13:33:30 780,14 MHz

General (11 Items)

Hardware (15 Items)

Memory (4 Items)

-0.17

+14.68 MHz

Histo

;

Histo

nav.xhtml

 Table of Contents

 		
 vPoller - Distributed vSphere API Proxy

 		
 Installation of vPoller

 		
 Requirements

 		
 Installation with pip

 		
 Installation from source

 		
 Installing the C client of vPoller

 		
 Configuration of vPoller

 		
 Configuring vSphere Agents for the Workers

 		
 vPoller Services

 		
 Starting and stopping the vPoller Proxy

 		
 Starting and stopping the vPoller Worker

 		
 Using the vPoller Management Interfaces

 		
 Managing vPoller Services with Supervisord

 		
 vPoller Helpers

 		
 Enabling helpers

 		
 vPoller Zabbix Helper

 		
 vPoller CSV Helper

 		
 Example usage of vPoller

 		
 Getting vSphere “about” info

 		
 Datacenter examples

 		
 ClusterComputeResource examples

 		
 HostSystem examples

 		
 VirtualMachine examples

 		
 Datastore examples

 		
 Viewing established Sessions

 		
 Getting vSphere Events

 		
 Getting vSphere Alarms

 		
 Performance metrics

 		
 Using the API

 		
 Sending task requests for processing

 		
 Executing vPoller tasks locally

 		
 Interfacing with vPoller from other languages

 		
 vPoller Integration With Zabbix

 		
 Why use vPoller with Zabbix and not just use stock Zabbix for VMware monitoring?

 		
 Prerequisites

 		
 Enabling the vPoller Helpers for Zabbix

 		
 Importing the vPoller templates in Zabbix

 		
 Native vPoller support for Zabbix

 		
 The Zabbix vPoller Key

 		
 Setting up vPoller externalscripts for Zabbix

 		
 Monitoring your VMware environment with vPoller and Zabbix

 		
 Importing vSphere objects as regular Zabbix hosts

 		
 Agent-less process monitoring in Virtual Machines

 		
 Example screenshots

 		
 Supported methods by vPoller

 		
 Terminology

_images/vpoller-zabbix-data-5.jpg
Triggers | Events = Graphs | Screens = Maps | Discovery

Group | Virtual machines ¥ | Host | zbx-vpoller-1

shame ® ek Lestale

[CPU (4 Items)

Filesystem (15 Items)
& General (11 Items)

Hardware (4 Items)

Memory (9 Items)

VMware Tools (6 Items)

_images/vpoller-zabbix-data-6.jpg
Dashboard = Overview = Web Triggers Events = Graphs | Screens = Maps Discovery = IT services

Configuration of items » Dashboard » Configuration of templates » Configuration of items » Latest data

TEST DATA

Items Group | Virtual machines ¥ | Host | zbx-vpoller-1 v

= Name u Last value Change

GPU (4 Items)
CPU Cores Per Socket 29 Apr 2014 12:44:27 2 - Graph
Number of virtual CPUs 29 Apr 2014 12:44:36 4 - Graph
Overall CPU Demand 29 Apr 2014 13:34:37 357,56 MHz - Graph
Overall cPU Usage 29 Apr 2014 13:34:38 357,56 MHz - Graph

= Filesystem (15 Items)
Capacity of /boot filesystem 29 Apr 2014 13:33:13 236.20 MB - Graph
Capacity of / filesystem 29 Apr 2014 13:33:12 1.83 6B - Graph
Capacity of /tmp filesystem 29 Apr 2014 13:33: 14 18368 Graph
Capacity of /ust filesystem 29 Apr 2014 13:33:15 4.58.GB - Graph
Capacity of /var filesystem 29 Apr 2014 13:33:16 7.1168 - Graph
Free space of /boot filesystem 29 Apr 2014 13:33:18 212.79 MB - Graph
Free space of /boot filesystem (percentage) 29 Apr 2014 13:33:23 90.05 - Graph
Free space of / filesystem 29 Apr 2014 13:33:17 1.50 GB - Graph
Free space of / filesystem (percentage) 29 Apr 2014 13:33:22 86.91 - Graph
Free space of /tmp filesystem 29 Apr 2014 13:33:19 1868 - Graph
Free space of /tmp filesystem (percentage) 29 Apr 2014 13:33:24 98.14 - Graph

_images/vpoller-zabbix-data-3.jpg
TEST DATA =

Items Group [Hypervisors v Host [sof-2]

= Name Last check Last value Change

CPU (9 Items)

= General (11 Items)
Cluster Name 29 Apr 2014 12:58:16 clustero1 - History
In Maintenance Mode 29 Apr 2014 13:33:26 0 - Graph
Overall Status 29 Apr 2014 13:33:32 yellow - History
Power state 29 Apr 2014 13:33:33 poweredon - History
Reboot Required 29 Apr 2014 12:38:34 o - Graph
Uptime. 29 Apr 2014 13:33:35 344 days, 02:46:25 +00:05:00 Graph
VMware vSphere API Version 29 Apr 2014 12:38:37 51 - History
VMware vSphere FullName 29 Apr 2014 12:38:38 VMware ESXi 5.1.0 build-799733 - History
VMware vSphere Name 29 Apr 2014 12:38:39 VMware ESXi - History
VMware vSphere Vendor 29 Apr 2014 12:38:40 VMware, Inc. - History
VMware vSphere Version 29 Apr 2014 12:38:41 5.1.0 - History

Hardware (15 Items)

Memory (4 Items)

_images/vpoller-zabbix-data-4.jpg
TEST DATA

Items

= Name
CPU (9 Items)
General (11 Items)
& Hardware (15 Items)
Bios LUID
Bios version
CPU Cores
CPU Frequency
CPU Packages
CPU Power Management Policy
CPU Power Management Support
CPU Threads
Distributed CPU fairmess
Distributed memory faimess
Memory Size
Model
Overall CPU Usage
Overall Memory Usage
Vendor

Memory (4 Items)

Last check

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014

Apr 2014

12,

12,

12,

12,

12,

12,

12,

12,

13

13

12,

12,

13

13

12,

38:

38:

38:

38:

38:

38:

38:

38:

33

33

38:

38:

33

33

38:

14

15

17

18

19

20

21

22

24

25

27

29

30

31

36

Group [Hypervisors 7| Host [sof-z

Last value

4C4C4544-0044-3010-8030-D2C04f4e5731

146
6

1.9 GHz

1

Not supported

Enhanced Intel SpeedStep(R)
12

1.62 KHz

2128

23.92 6B

PowerEdge R320

780,14 MHz

22.37 6B

Dell Inc

Change

+14.68 MHz

+9MB

Bl=

Histo

;

Histo

Histo

B g

_images/vpoller-zabbix-processes-1.jpg
Name
Type

Key

User name

password

Type of information
Data type

Units

Use custom multiplier
Update interval (in sec)

Flexible intervals

Total number of processes

simple check v

vpoller["vm process.get",

"{$VSPHERE HOST}", "{HOST.HO

Select

Numeric (unsigned) ¥

No flexible intervals defined.

Decimal v
e 1
300
Interval Period Action

New flexible interval Interval (insec)| 50| Period |1-7,00:00-24:00 | | Add
History storage period (in days) 30
Trend storage period (in days) 30
Store value | As is v
Show value | As is v | show value mappings
New application
Applications | -None- =
Populates host inventory field | -None-
Description
Enabled
[save | [clone | pelete | cancel

_images/vpoller-zabbix-processes-2.jpg
Name | Number of processes too high

Expression | {yPoller Process Monitoring Template: vpoller["vm.process.get’, " Add
{$VSPHERE HOST}", "{HOST.HOST}", "cmdLine', ™, *root",

"passwOrd'] last()}>100

Expression constructor
Multiple PROBLEM events generation [

Description

URL

Severity | Not classified | Information | Warning | Average | High | Disaster
Enabled ¥

save | [cancel |

_images/vpoller-zabbix-data-7.jpg
Name *
@ CPU (4 Items)

Filesystem (15 Items)
© General (11 Items)

Annotation

Connection State

Guest Full Name

Guest ID

Guest Name

Guest UUID

Overall Status

Power State

Running on hypervisor

Uptime

Virtual Hardware Version
[Hardware (4 Items)

CPU Cores Per Socket

Memory Size.

Number of virtual CPUS

Virtual Hardware Version

ast check

29

29

29

29

29

29

29

29

29

29

29

29

Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014
Apr 2014

Apr 2014

Apr 2014

29 Apr 2014

29

29

Apr 2014

Apr 2014

12,

13

12,

12,

12,

12,

13

13

12,

13

12,

12,

12,

12,

12,

44:22

34:25

44:20

44:30

44:32

44:33

34:39

34:40

44:42

34:46

44:47

44:27

s
®

44:47

Group | Virtual machines ¥ | Host | zbx-vpoller-1

Last value

connected

Debian GNU/Linux 6 (64-bit)
debians_64Guest

zbx-vpoller-1
42322814-ead0-fag9-4b2c-540af142d035
green

poweredon

sof-2

7 days, 01:32:57

vmx-09

4GB

vmx-09

Change

+00:05:00

History
History
History
History

History

rd

History.

_images/vpoller-zabbix-data-8.jpg
Group | Virtual machines ¥ | Host | zbx-vpoller-1

= Name * Last check Last value Change

@ CPU (4 Items)
Filesystem (15 Items)

@ General (11 Items)

Hardware (4 Items)

& Memory (9 Items)
Ballooned Memory. 29 Apr 2014 13:34:23 o8 - Graph
Compressed Memory 29 Apr 2014 13:34:24 o - Graph
Consumed Overhead Memory 29 Apr 2014 13:34:26 45 mB - Graph
Guest Memory Usage 29 Apr 2014 13:34:31 409 MB -164 B Graph
Host Memory Usage 29 Apr 2014 13:34:34 33568 +1 M8 Graph
Memory Size 29 Apr 2014 12:44:35 4GB - Graph
Private Memory 29 Apr 2014 13:34:41 3368 - Graph
Shared Memory 29 Apr 2014 13:34:43 o8 - Graph
Swapped Memory 29 Apr 2014 13:34:44 o8 - Graph

& vMware Tools (6 Items)
Guest Family 29 Apr 2014 12:44:28 linuxGuest - History
Tools Running Status 29 Apr 2014 12:44:45 guestToolsRunning - History
VMware Tools Heartbeat Status 29 Apr 2014 12:44:49 appstatusGray. - History
VMware Tools Sync Time With Host 29 Apr 2014 12:44:50 0 - Graph
VMware Tools Upgrade Policy 29 Apr 2014 12:44:50 manual - History
VMware Tools Version 29 Apr 2014 12:44:51 9216 - Graph (]

_images/vpoller-zabbix-processes-3.jpg
Name
Type

Key

User name

password

Type of information
Data type

Units

Use custom multiplier
Update interval (in sec)

Flexible intervals

Number of Apache processes

simple check v

vpoller["vm process.get",

"{$VSPHERE HOST}", "{HOST.HO

Select

Numeric (unsigned) ¥

No flexible intervals defined.

Decimal v
=) 1
300
Interval Period Action

New flexible interval Interval (insec)| 50| Period |1-7,00:00-24:00 | | Add
History storage period (in days) 30
Trend storage period (in days) 30
Store value | As is v
Show value | As is v | show value mappings
New application
Applications | -None- =
Populates host inventory field | -None-
Description
Enabled
[save | [clone | pelete | cancel

_images/vpoller-zabbix-processes-4.jpg
Name | Apache is not running on {HOST.NAME}

Expression | {¥Poller Process Monitoring Add
Template; vpoller["vm.process.get’, "{$VSPHERE.HOSTY', "
{HOST.HOST}", "cmdLine", "/ust/sbin/apache2", "root",
"password'] last()}=0]

Expression constructor
Multiple PROBLEM events generation [

Description

URL

Severity | Not classified | Information | warning | Average [JHgN| Disaster
Enabled ¥

save clone | Delete | cancel

_images/vpoller-zabbix-templates.jpg
00000ogo

Template VMware vSphere - vPoller Applications (5)
Template VMware vSphere - vPoller with C client Applications (5)
Template VMware vSphere Datastore - vPoller Applications (1)
Template VMware vSphere Datastore - vPoller with C client Applications (1)
Template VMware vSphere Hypervisor - vPoller Applications (4)
Template VMware vSphere Hypervisor - vPoller with C client Applications (4)
Template VMware vSphere Virtual Machine - vPoller Applications (6)

Template VMware

vSphere Virtual Machine - vPoller with C client Applications (6)

Items (8) Triggers (1)
Items (8) Triggers (1)
Items (12) Triggers (2)
Items (12) Triggers (2)
Items (28) Triggers (6)
Items (28) Triggers (6)
Items (30) Triggers (3)

Items (30) Triggers (3)

Graphs (0)
Graphs (0)
Grzphs (0)
Graphs (0)
Grzphs (0)
Grzphs (0)
Grzphs (0)

Graphs (0)

Screens (0)
Screens (0)
Screens (0)
Screens (0)
Screens (0)
Screens (0)
Screens (0)

Screens (0)

Discovery (5)

Discovery (5)

Discovery (0)

Discovery (0)

Discovery (0)
Discovery (0)
Discovery (1)

Discovery (1)

_static/comment-bright.png

_images/vpoller.png
Client Client

Client

. Client . Client .

N\

primary
vPoller Proxy keepalived

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

